Beamline 20-BM / PNC-CAT

Scientific focus: Materials science and environmental science

Scientific programs: Material science, environmental science, and surface science

Optics & Optical Performance

BESSRC-type monochromator
 29 m from source
 3.5–26 keV energy range Si(111)
 20–75 keV energy range Si(333)
 1–2 x 10⁻⁴ energy resolution (ΔΕ/Ε)
 35 mm offset
 water cooling
 2nd crystal: 3 mrad acceptance for
 sagittal focusing (curr. unfocused)

• harmonic rejection mirror variable angle: 4–30 keV critical energy provides vert. focusing to better than 50 µm

Experiment Stations 20-BM-A

• white beam first optics enclosure

20-BM-B

• monochromatic general purpose station

Detectors

- ionization chambers
- 13-element and single-element Ge
- CCDs
- Siemens Hi Star area detector
- NaI scintillation
- Si diodes

Beamline Controls and Data Acquisition

- Sun, UNIX with EPICS/VME
- Windows NT with LabView
- SPEC

Beamline Support Equipment/Facilities

- MBE/UHV surface chamber (planned)
- microtomography at 10 micron resolution
- 4-circle kappa geometry diffractometer

Bending Magnet Source Characteristics (nominal)

source	APS bending magnet
critical energy	19.51 keV
on-axis peak brilliance at 16.3 keV	2.9×10^{15} ph/sec/mrad $\%$ mm $\%$ 0.1 $\%$ bw
on-axis peak angular flux at 16.3 keV	9.6 x 10 ¹³ ph/sec/mrad%0.1%bw
on-axis peak horizontal angular flux at 5.6 keV	1.6 x 10 ¹³ ph/sec/mradh/0.1%bw
source size at critical energy $\sum_{y}^{x} \sum_{y}^{x}$	$145~\mu{ m m}$ $36~\mu{ m m}$
source divergence at critical	
energy $\sum_{x'} \sum_{y'}$	6 mrad 47 <i>µ</i> rad